

Smart Dispatch for Electricity Markets

Dr. Xing Wang Dr. Avnaesh Jayantilal

June 03, 2010 @FERC

Smart Dispatch Overview

Commitment and Dispatch Evolution of Capabilities

Classical Dispatch

- Unit Commitment Scheduling, Economic Dispatch, AGC
- Grid security, scheduling, dispatch are Independent tasks

Market-Based Dispatch

- UC/ED with explicit transmission security constraints
- Formal Day-Ahead and Real-time tasks
- Pricing Dual of the MW signal
- Transparency & consistency
- Large-scale system dispatch

Smarter Dispatch

- Dispatch with explicit forward vision
- Dispatch with intelligence (e.g. parameter adaptation)
- Improve system resiliency against uncertainties (e.g. DER, Wind, DR)
- Mitigate root-causes for dispatch deficiencies
- Process re-engineering for business/economic analysis

Dimensions of Smart Dispatch Applications

GCA Benefits

- suggestions for near-term commitment changes several hours into the future,
- suggestions for regulation commitment changes,
- heuristically determined justifications for the commitment changes, and
- a view of anticipated power system operating conditions.
- evaluate capacity, ramp, ancillary service, and transmission sufficiency,
- apply analytical economic models which co-optimize energy and ancillary products to establish and explain commitment suggestions,
- provide representation of demand, interchange, wind generation, and other uncertainty in the future system state,
- enable real-time data to be incorporated for the best expectations of the future power system status,
- address intra-hour issues by studying near future term period in subhourly study intervals and suggesting commitment changes to address the intra-hour issues,
- provide the key information summarizing the complex analysis in a rich user experience that enhances the operator's situational awareness and providing efficient decision support,

Comprehensive Operating Plan (COP)

- ▶ COP is driven by the need of operator decision support When to make what decision and why.
- Why COP
 - Store and coordinate input/solution of SKEDs
 - Provide a modular framework for SKEDs' plug-n-play
 - Bridge between new SKEDs and existing business processes
 - Facilitate solution visualization for operators
- What's in COP
 - Resource schedules
 - Supplementary information
 - Variable time steps
 - Historical dispatch data
- COP provides coordination from planning to dispatch
 - Emission Constraint
 - Energy Constraint

Coordination between SKEDs for Reachability

GCA Features

- Unit commitment radar and likelihood
- Commitment justification
- Commitment and dispatch inertia
- Flexible time Indices for different decision variables
- Cross day boundary modeling
- Pricing of robustness
- Unit characteristics
 - MW dependent ramp-rate
 - Startup/shutdown profiles
 - Forbidden zone and holding points

Flexible Time Indices for Different Decision Variables

Next Generation of Unit Commitment and Dispatch Application

- Modular design to support UC, ED and other scheduling functions simultaneously
- ▶ Flexible and configurable formulation to support different market processes and rules
 - DA, RUC, AS, LA, RT, ...
- Resource modeling
 - Intermittent resources, Combined Cycle, Joint-Owned, Storage, Demand responses
- Uncertainty modeling
 - Traditional: LF, NSI
 - Emerging: Intermittent resources, Price Responsive Demand, ...
- ► Enhanced Computation Performance
 - Multi-core technology
 - Latest MIP performance improvements from different commercial solvers

Thank You!